Chem. Ber. 113, 3803 - 3814 (1980)

Trimethylsilylcyanid als Umpolungsreagens, VI¹⁾

Anionische 1,4- $O \rightarrow C$ -Silylgruppen-Umlagerung

Siegfried Hünig * und Manfred Öller²⁾

Institut für Organische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg

Eingegangen am 13. März 1980

Die aus den substituierten Acroleinen 5a-f mit Trimethylsilylcyanid erzeugten Addukte 6 werden bei -78 °C zu den ambidenten Anionen 6_A deprotoniert, die von Trimethylsilylchlorid in 3-oder (und) 1-Stellung zu 7 oder (und) 8 silyliert werden. Beim Erwärmen auf Raumtemperatur erleiden $6a_A$ und $6b_A$ glatt $1,4-O \rightarrow C$ -Silylgruppenumlagerung zu $13a_A$ und $13b_A$, die als Silylierungsprodukte abgefangen werden. $6c - d_A$ zersetzen sich beim Erwärmen undefiniert. Triethylsilyl- an Stelle von Trimethylsilylgruppen verlangsamen die Umlagerung stark. Die Konstitution und Konfiguration der verschiedenen Produkte wird ermittelt.

Trimethylsilyl Cyanide – A Reagent for Umpolung, VI^{1} Anionic 1,4- $O \rightarrow C$ -Silyl Group Rearrangement

The adducts 6 from substituted acroleins 5a-f and trimethylsilyl cyanide form the anions 6_A on deprotonation at -78 °C, which are silylated by trimethylsilyl chloride to 7 or (and) 8 in positions 3 or (and) 1. On warming up to room temperature, $6a_A$ and $6b_A$ undergo smoothly $1,4-O \rightarrow C$ -silyl group rearrangements to form $13a_A$ and $13b_A$ which can be trapped by silylation. $6c - d_A$ decompose on warming up. Triethylsilyl instead of trimethylsilyl groups decelerate the rearrangement appreciably. Structure and configuration of the different products are determined.

Unter den zahlreichen Silylgruppen-Umlagerungen³⁾ finden sich auch solche, die sich zwischen Si-C- und Si-O-Bindungen abspielen. Dabei sollte man erwarten, daß wegen $D_{Si-O} = 370-450 \text{ kJ/mol}$ und $D_{Si-C} = 230-320 \text{ kJ/mol}^{4)}$ nur $C \rightarrow O$ -Wanderungen auftreten. Überraschenderweise beobachtet man aber bei den Carbanionen 1 und 2 eine Wittig-Umlagerung zu den Alkoholaten 3^{50} und 4^{60} , die sogar zu einem mobilen Gleichgewicht führt, das im Falle von 1 weitgehend auf der Seite von 3 liegt⁵⁾. Diese Umlagerungen beweisen, daß der Energieaufwand für den $O \rightarrow C$ -Übergang der Trimethylsilylgruppe von $\approx 140 \text{ kJ/mol}$ durch zusätzliche Faktoren, wie z. B. bessere Ladungsstabilisierung am Sauerstoff³⁾ und günstigere Ionensolvatation, kompensiert wird.

© Verlag Chemie, GmbH, D-6940 Weinheim, 1980 0009 – 2940/80/1212 – 3803 \$ 02.50/0 Wir berichten nun im folgenden über eine $O \rightarrow C$ -Silylgruppenumlagerung, die sich ebenfalls in einem Carbanion vollzieht, aber dem Typ einer $1,4-O \rightarrow C$ -Wanderung angehört. Die Umlagerung und insbesondere ihre für präparative Zwecke wichtige Unterdrückung wurde bereits im Rahmen der nucleophilen Acylierung mittels umgepolter α,β -ungesättigter Aldehyde erwähnt¹⁾.

A. Silylierung ambidenter Carbanionen vom Typ 6,

Ausgangspunkt für die vorliegende Untersuchung bilden die ambidenten Carbanionen 6_A , dargestellt durch Deprotonierung der Addukte 6 mittels LDA in THF bei – 78 °C, die aus den α , β -ungesättigten Aldehyden 5 und Trimethylsilylcyanid leicht zugänglich sind ¹). Da sich die Beweisführung für die Umlagerung vorwiegend auf Silylierungsreaktionen stützt, sei zunächst diese Reaktion für die Anionen $6a - f_A$ vorgestellt. Während, wie beschrieben¹), Alkylhalogenide diese Anionen in 1-Stellung alkylieren, zeigt sich gegenüber Chlortrimethylsilan deren ambidenter Charakter.

8	н	н	н	89	> 95	< 5
b	Н	Н	CH_3	84	> 95	< 5
С	н	CH3	н	64	58	42
d	CH3	СH3	Н	91	< 5	> 95
e	н	$n-C_3H_7$	Н	83	< 5	> 95
f	н	C_2H_5O	СНэ	80	< 5	> 95

Nur wenn die 3-Position mit einem längerkettigen Rest ($6e_A$, $6f_A$) oder mit zwei Methylgruppen besetzt ist ($6d_A$), tritt die Trimethylsilylgruppe ausschließlich in 1-Stellung unter Bildung von 8 ein. Mit einer 3-ständigen Methylgruppe (6c) werden neben 42% 8 bereits 58% 7 gebildet. Bei den in 3-Stellung unsubstituierten Anionen $6a_A$ und $6b_A$ sind schließlich nur noch die 3-Substitutionsprodukte 7a und 7b zu beobachten.

Dieser bemerkenswerte Substituenteneinfluß in 6_A bleibt auch gegenüber Chlordimethylsilan erhalten. Aus $6b_A$ entsteht nur 9 und aus $6d_A$ nur 10, deren Konstitutionszuordnung zusammen mit anderen Bis-silylderivaten in Abschnitt D besprochen wird. Die Bildung von 9 und 10 beweist zugleich, daß jeweils die nicht umgelagerten Anionen silyliert wurden. 7a, b und 9 liegen ausschließlich als Z-Isomere vor, im Gegensatz zu den entsprechenden Umlagerungsprodukten (s. u.). Damit muß auch dem Anion 6_A die gezeigte Konfiguration zukommen, in Übereinstimmung mit der Erwartung, daß in Allyl-Anionen der Donorsubstituent die Z-Stellung, der Acceptorsubstituent hingegen die E-Stellung einnimmt⁷). Der Angriff des Silylrestes am unsubstituierten Ende der ambidenten Anionen $6a_A$ und $6b_A$ entspricht dem gleichen Befund bei einseitig substituierten Allyl-Anionen⁸ sowie bei den Anionen α,β -ungesättigter Aldimine⁹.

Der Wechsel in der Regioselektivität der Silylierung beim Übergang von $6a_A$ bis $6d_A$ steht in einer auffälligen Parallele zur sinkenden Umlagerungstendenz dieser Anionen, wie sich an den wachsenden Ausbeuten an Alkylierungsprodukt mit reaktionsträgen Alkylhalogeniden wie 1-Brom-2-phenylethan ablesen läßt¹).

Beim Ersatz des Chlortrimethylsilans durch Chlortrimethylstannan bleiben Alkylgruppen in 3-Stellung von 6_A ohne Einfluß: Reaktion findet nur in 3-Stellung statt, wie die Beispiele 11 und 12 zeigen, denen vermutlich ebenfalls die Z-Konfiguration zugeschrieben werden muß.

B. 1,4- $O \rightarrow C$ -Umlagerungen der Anionen 6a_A und 6b_A

Selbst wenn man das Anion $6a_A$ 12 h bei -40 °C mit 1-Brom-2-phenylethan reagieren läßt, ist kein Alkylierungsprodukt zu fassen ¹⁾. Statt dessen isoliert man bei der üblichen Aufarbeitung mit wäßrigem Ammoniumchlorid 3-(Trimethylsilyl)propionamid (14a). Danach ist zu vermuten, daß unter $1,4-O \rightarrow C$ -Silylgruppen-Umlagerung zunächst das Anion 13_A entstanden ist, das nach Protonierung zum Acylcyanid 13a eine Ammonolyse zu 14a erleidet.

Diese postulierte Umlagerung läßt sich voll bestätigen, wenn man die Lösungen der Anionen $6a_A$ und $6b_A$ nach Aufwärmen von - 78°C auf Raumtemperatur silyliert. Aus beiden Anionen entstehen die schon beschriebenen Bissilylverbindungen 7a und 7b, aber nunmehr als Z/E-Gemisch. Daß die Silylierung tatsächlich am Sauerstoffatom der umgelagerten Anionen 13_A stattgefunden hat, beweist die Silylierung mit Chlordimethylsilan, die zu 15 bzw. 16 führt. Auch diese Produkte liegen als E/Z-Gemische vor, deren Zusammensetzung sich jedoch ¹H-NMR-spektroskopisch nicht zuverlässig ermitteln ließ.

Es muß also angenommen werden, daß bereits die Anionen 13_A als E/Z-Gemische vorliegen. Das ist nur möglich, wenn die E-Isomeren durch intermolekulare Silylgruppenübertragung entstehen. Ob sich die Z-Isomeren von 13_A durch intramolekulare Silylgruppenwanderung bilden, muß offen bleiben.

Allerdings trifft dieser Schluß nur zu, wenn die Anionen 13_A selbst bei Raumtemperatur konfigurationsstabil sind. Das ist jedoch der Fall, wie die folgenden Versuche zeigen.

Da die Silyletherbindung auch in 2-(Trimethylsiloxy)acrylnitrilen durch Alkoholate gespalten wird¹⁰, wurde reines (Z)-7b unter den bei der Umlagerung angewandten Bedingungen und dem gleichen Solvensgemisch mit Lithiummethanolat behandelt.

Auf Zusatz von Chlortrimethylsilan tritt eine exotherme Reaktion ein, die ausschließlich zu (Z)-7b zurückführt. Daß zuvor wirklich das Anion (Z)-13b_A vorgelegen hat, beweist die Reaktion mit Chlordimethylsilan zu (Z)-16. Diese Konfigurationsstabilität des Enolats 13b_A lehrt, daß die Z/E-Isomerisierung, die für die Bildung von Z, E-Gemischen bei der 1,4- $O \rightarrow C$ -Silylumlagerung verantwortlich ist, auf einer früheren Stufe – wahrscheinlich auf der des Anions 6_A – stattfinden muß. Im Gegensatz zur zi-

tierten $1,2-O \rightarrow C$ -Umlagerung^{5,6}) ist die vorliegende $1,4-O \rightarrow C$ -Umlagerung nicht reversibel: Während das Anion $6b_A$ mit Methyliodid 80% des 1-Alkylierungsproduktes 17 liefert¹), wird nach der Umlagerung zu $13b_A$ nur der isomere Enolether 18 isoliert, ohne daß sich 17 nachweisen ließ. Bei einem mobilen Gleichgewicht zwischen $6b_A$ und $13b_A$ hätte aber auch 17 entstehen müssen.

Die Umlagerungsgeschwindigkeit der Anionen $6a_A$ und $6b_A$ wird erheblich gebremst, wenn die Trimethylsilyl- durch die Triethylsilylgruppe ersetzt wird. Eine grobe Abschätzung erlaubt z. B. die Reaktion mit Methyliodid, bei der das Anion 19_A als 20 abgefangen wird.

Die Stabilisierung von 19_A und 20_A durch die Triethylsilylgruppe ist so stark, daß diese Anionen ohne Umlagerung auch mit trägen Alkylierungsmitteln noch glatt reagieren¹⁾.

C. Verhalten der Anionen 6c_A, 6d_A und 6f_A

Wie weiter oben beschrieben, werden die Anionen $6d_A$ und $6f_A$ von Chlortrimethylsilan nicht in 3-Stellung alkyliert. Damit hängt es wohl zusammen, daß ihre Lösungen beim Erwärmen auf Raumtemperatur nicht die besprochene $1,4-O \rightarrow C$ -Silylwanderung eingehen, sondern eine undefinierte Zersetzung erleiden (keine Produkte mit Chlortrimethylsilan).

Vermutlich kommt hier die mehrfach genannte 1,2-Verschiebung^{5,6)} zum Zuge, bei der das neue Anion 24_A sofort Cyanid abspalten sollte¹¹⁾.

Dabei muß angenommen werden, daß das entstehende Silylketon 25 sich zu unbekannten (polymeren) Produkten zersetzt.

Eine nicht unerwartete Zwischenstellung nimmt das Anion $6c_A$ ein, das unter den üblichen Umlagerungsbedingungen und Reaktion mit Chlortrimethylsilan neben Polymeren noch 21% durch *O*-Silylierung erzeugtes 7c liefert, wobei das ¹H-NMR-Spektrum keinen Hinweis auf Stereoisomere enthält.

D. Konstitutionsermittlung der Silylierungsprodukte

1. Stellungsisomerie der Silylgruppen

In den Silylierungsprodukten 7 bilden sich die beiden Trimethylsilylgruppen im ¹H-NMR-Spektrum getrennt ab, wobei der O-Silylgruppe stets die höhere chemische Verschiebung zukommt. Entsprechendes gilt für die Dimethylsilylgruppen, in denen

$$-CH_{2}-Si-CH_{3} > C=C-O-Si-CH_{3}$$

$$\delta \approx 0.0-0.1 \qquad \delta \approx 0.3$$

$$-CH_{2}-Si-CH_{3} > C=C-O-SiMe_{2}$$

$$H \qquad \delta \approx 4.0 \qquad H \qquad \delta \approx 4.9$$

die Differenz zwischen den HSi-Septetts bis auf 0.9 ppm ansteigt. Auch die bekannte lineare Korrelation zwischen der Si – H-Streckschwingung und der chemischen Verschiebung in Trialkylsilanen¹²⁾ erlaubt eine eindeutige Unterscheidung zwischen den Isomeren 9 und 16, wie Abb. 1 zeigt. Das sich einordnende Signal muß einer – CH_2SiHCH_3 -Gruppe und damit 9 entsprechen.

Abb. 1. Korrelation zwischen der Si-H-Streckschwingung und der chemischen Verschiebung für Si-H in Trialkylsilanen (vgl. Lit.¹²)

2. Konfiguration der Bis(trimethylsilyl)-Verbindungen 7a und b

Wie gezeigt, erhält man durch Silylierung der Anionen $6a_A$ und $6b_A$ vor der Umlagerung 7a und 7b jeweils nur als *ein* Stereoisomeres, während nach der Umlagerung ein Gemisch resultiert. Damit lassen sich die ¹H- und ¹³C-NMR-Daten beider Isomerenpaare gewinnen. Diese sind, zusammen mit den nötigen Vergleichssubstanzen $26 - 34^{10,13}$ in Tab. 1 aufgeführt.

Die getroffene E/Z-Zuordnung stützt sich auf den Befund, daß bei Vinylethern und -estern mit *einem* Substituenten in β -Position der β -Wasserstoff des Z-Isomeren stets stärker abgeschirmt ist als der des E-Isomeren¹⁴).

Überträgt man diese Gesetzmäßigkeit auf 2-(Trimethylsiloxy)acrylnitrile, so steht dem Elektronenschub der Siloxygruppe im Z-Isomeren ein relativ schwacher Elektronenzug der Nitrilgruppe gegenüber. Beim E-Isomeren trifft ein starker Elektronenzug der Nitrilgruppe mit einem relativ gesehen schwächeren Elektronenschub der Siloxygruppe zusammen¹⁰. Die Effekte der Nitril- und Siloxygruppe sind zwar gegenläufig, dennoch reicht die Differenz der Verschiebung der Vinylprotonen-Signale des E- und Z-Isomeren aus, um eine Zuordnung zu treffen.

Diese Zuordnung findet ihre eindeutige Bestätigung durch die ¹³C-NMR-Spektren. So konnte *Hertenstein*¹⁰ zeigen, daß bei Alkyl-2-(trimethylsiloxy)acrylnitrilen das ¹³C-NMR-Signal des Nitrilkohlenstoffs aller Z-Isomeren bei 116 \pm 0.2 ppm liegt, bei den *E*-Isomeren dagegen bei 114 \pm 0.2 ppm. Außerdem ist die *cis*-Kopplung J_{C1H^3} der Z-Form kleiner als 5.1 Hz, die entsprechende Kopplung der *E*-Form größer als 10 Hz, die *trans*-Kopplung also erwartungsgemäß erheblich größer als die *cis*-Kopplung (C¹ = CN). Die für die Z/*E*-Isomeren von 7a gefundenen Werte stimmen hiermit gut überein (vgl. Tab. 1).

Schwieriger ist die Zuordnung der 3,3-dialkylsubstituierten 2-(Trimethylsiloxy)acrylnitrile 7b, da hier der Vinylwasserstoff an C-3 als ideale Sonde zur Strukturbestimmung fehlt.

	1	n1 n2	R ² OSiMe ₃	R ¹	OSiMe ₃
Nr.	-H-INMK	K', K'	$\mathcal{L} = \mathcal{L}$	R^2	CN
			a (Z)	ີb (<i>E</i>)	Δ
	=CH	H, CH ₂ SiMe ₃	5.58	5.73	0.15
	CH ₂		1.63	1.66	0.03
7 b	CH_2	CH ₃ , CH ₂ SiMe ₃	1.67	1,74	0.07
	CH_3		1.87	1.72	0.15
26	=CH	$H_1 C_2 H_5$	5.45	5.59	0.14
27	=CH	H, i-Č ₃ H ₇	5.37	5.51	0.14
28	CH,	H, CH,	1.70	1.84	0.14
29	CH_2	H, CH ₂ C ₆ H,	3.47	3.55	0.08
30	CH_2	H, CH ₂ SCH ₃	3.14	3.22	0.08
31	CH_2^-	H, CH_2OCH_3	3.98	4.03	0.05
	¹³ C-NMR			n	
7a	- CN	H, CH ₂ SiMe ₁	116.7	115.1	1.6
	CH ₂		17.3	18.7	1.4
	J_{C1H3}		4.4 Hz	11.0 Hz	
7 b	CH_2	CH ₃ , CH ₂ SiMe ₃	23.7	24.9	1.2
	CH	5. 2 5	20.0	17.5	2.5
32	CH	H, CH,	10.3	12.3	2.0
33	CH_2	$H, C_2H,$	18.4	20.9	2.5
34	CH ₂	H, CH ₂ C ₆ H,	31.2	33.7	2.5

Tab. 1. ¹H- und ¹³C-NMR-Teilspektren von 2-Trimethylsiloxy-2-propennitrilen (CDCl₃; δ, ppm)

Betrachtet man die Methylengruppensignale monoalkylsubstituierter 2-(Trimethylsiloxy)acrylnitrile im ¹H-NMR-Spektrum, so zeigt sich in Analogie zu 3-Alkylnitrilen¹⁵⁾ der Effekt, daß die Signale der Gruppen *cis* zur Nitrilgruppe bei tieferem Feld liegen als die der *trans*-ständigen Gruppen.

Überträgt man diesen Befund auf dialkylsubstituierte 2-(Trimethylsiloxy)acrylnitrile, so kann auf Grund der Methylengruppensignale im ¹H-NMR-Spektrum für 7b die in Tab. 1 gegebene Zuordnung getroffen werden.

Derselbe Effekt spiegelt sich auch in den Methylprotonensignalen wider. Die Methylgruppe *cis* zur Siloxygruppe in (E)-7**b** absorbiert bei höherem, diejenige *trans* zur Siloxygruppe in (Z)-7**b** hingegen bei tieferem Feld¹⁶). Eine Bestätigung dieser Zuordnung durch die ¹H-NMR-Spektren ist an Hand der ¹³C-NMR-Spektren möglich (Tab. 1). So liegen die Absorptionssignale des Methylenkohlenstoffs monoalkylsubstituierter 2-(Trimethylsiloxy)acrylnitrile beim Z-Isomeren stets bei höherem Feld als die der *E*-Form. Die ¹³C-NMR-Spektren untermauern also die schon durch das ¹H-NMR-Spektrum getroffene Zuordnung.

Wir danken dem Fonds der Chemischen Industrie sowie der BASF Aktiengesellschaft, Ludwigshafen/Rhein, für die Förderung dieser Arbeit. M. Ö. dankt außerdem dem Fonds der Chemischen Industrie für die Gewährung eines Doktorandenstipendiums.

Experimenteller Teil

Geräte, Solventien sowie allgemeine Arbeitsvorschriften (AAV 1-4) vergleiche Lit.¹⁾. Die Siedepunkte entsprechen den Temperaturen des Kugelrohrofens.

Reaktion der 2-Trimethylsiloxy-3-butennitrile 6 mit Elektrophilen RX: 10.0 mmol 6 (3 in Lit.¹⁾) werden nach AAV 2¹⁾ bei -78 °C in 6_A übergeführt und mit 15.0 mmol RX umgesetzt. Nach Aufarbeitung gemäß AAV 4¹⁾ wird das Rohprodukt im Kugelrohr destilliert. RX: 1.62 g Chlortrimethylsilan (TSi); 1.41 g Chlordimethylsilan (DSi) oder 1.99 g (10.0 mmol) Chlortrimethylstannan (TSn). Ausbeuten und Siedepunkte der so erhaltenen Produkte finden sich in Tab. 2, die zugehörigen analytischen und spektroskopischen Daten in Tab. 3.

Edukt (g)	RX	Produkt	Sdp. °C/Torr	g (%)
6a (1.55)	TSi	2-Trimethylsiloxy-4-trimethylsilyl- 2-butennitril (7 a)	45/0.02	2.01 (89)
6b (1.69)	TSi	3-Methyl-2-trimethylsiloxy-4-trimethylsilyl- 2-butennitril (7b)	150/14	2.02 (84)
6c (1.69)	TSi	2-Trimethylsiloxy-4-trimethylsilyl-2- pentennitril (7c) neben 2-Trimethylsiloxy-2-trimethylsilyl-3- pentennitril (8c): $7c:8c = 58:42^{a}$	60/0.01	1.55 (64)
6d (1.83)	TSi	4-Methyl-2-trimethylsiloxy-2-trimethyl- silyl-3-pentennitril (8d)	60/0.01	2.32 (91)
6e (1.97)	TSi	2-Trimethylsiloxy-2-trimethylsilyl-3- heptennitril (8e)	55/0.005	2.24 (83)
6f (2.13)	TSi	4-Éthoxy-3-methyl-2-trimethylsiloxy-2- trimethylsilyl-3-butennitril (8f)	70/0.05	2.29 (80)
бь (1.69)	DSi	4-Dimethylsilyl-3-methyl-2-trimethyl- siloxy-2-butennitril (9)	70/0.01	1.80 (79)
6d (1.83)	DSi	2-Dimethylsilyl-4-methyl-2-trimethylsiloxy- 3-pentennitril (10)	50 - 55/0.005	1.41 (58)
6a (1.55)	TSi ^{b)}	7a; 7a (Z): 7a (E) = 80: 20 ^{c)}	50 - 55/0.02	1.92 (85)
6 b (1.69)	TSi ^{b)}	7b	150/14	1.97 (82)
бь (1.69)	DSi ^{b)}	3-Methyl-2-dimethylsiloxy-4-trimethyl- silyl-2-butennitril (16)	60-70/0.01	1.73 (76)
6 b (1.69)	TSn	3-Methyl-2-trimethylsiloxy-4-trimethyl- stannyl-2-butennitril (11)	70.5/0.05	2.39 (72)
34 (1.83)	TSn	4-Methyl-2-trimethylsiloxy-4-trimethyl- stannyl-2-pentennitril (12)	80/0.01	2.11 (61)
6c (1.69)	TSi ^{b)}	2-Trimethylsiloxy-4-trimethylsilyl-2- pentennitril (7c)	100/0.05	0.52 (21)

Tab. 2. Ausbeuten und Siedepunkte der durch Reaktion von 2-Trimethylsiloxy-3-butennitrilen 6 mit RX erhaltenen Produkte (TSi = Me₃SiCl, DSi = Me₂SiHCl, TSn = Me₃SnCl)

^{a)} Aus dem ¹H-NMR-Integrationsverhältnis von $C - CH_3$ ermittelt. – ^{b)} Nach Metallierung auf Raumtemperatur erwärmen lassen, dann RX zugesetzt. – ^{c)} Wie ^{a)} aus CH_2 ermittelt.

Reaktion von 6a mit 1-Brom-2-phenylethan: 1.55 g (10.0 mmol) 6a werden mit 11.0 mmol LDA nach AAV 2¹) umgesetzt. Nach Zugabe von 1.85 g (10.0 mmol) 1-Brom-2-phenylethan wird 12 h bei – 40 °C gerührt und anschließend nach AAV 3¹) aufgearbeitet. Dabei werden 3.08 g einer rotbraunen, viskosen Flüssigkeit erhalten, woraus mit CCl₄ 0.53 g (37%) einer farblosen, kristallinen Substanz mit Schmp. 95 – 96 °C, identifiziert als 3-(Trimethylsilyl)propionamid (14a) (Schmp. Lit.¹⁷⁾ 96 °C), isoliert werden können. – IR (Nujol): 3450, 1650 cm⁻¹. – ¹H-NMR (CDCl₃): $\delta = 0.01$ (s; 9H), 0.73 – 1.21 (m; 2H), 2.25 – 2.59 (m; 2H), 5.80 (breit; 2H).

C₆H₁₅NOSi (145.2) Ber. C 49.60 H 10.40 N 9.65 Gef. C 49.62 H 10.02 N 9.94

_	¹ H-NMR (CDCl ₃) δ [ppm]	Summenformel (Molmasse)		υ	н	z
.09 (s; 9H), - .63 ⁺ + 1.66	0.33 (s; 9H), + (2d, J = 9Hz; 2H), 2t. J = 9Hz: 1H)	C ₁₀ H ₂₁ NOSi ₂ (227.4)	Ber. Gef.	52.81 52.64	9.30 9.52	6.16 6.11
.05 + 0.10 (2) .67 + 1.72 + 2	s; 9H), 0.25 (s; 9H), 74 + 1.87 (4s; 5H) ^{+ b)}	C ₁₁ H ₂₃ NOSi ₂ (241.5)	Ber. Gef.	54.71 54.83	9.60 9.75	5.31 5.31
.05 (s; 9H), 0. .09 (d; 3H), 1. .38 (d: 1H)	32 (s; 9 H), 87 – 2.40 (m; 1 H),	C ₁₁ H ₂₃ NOSi ₂ (241.5)	Ber. Gef.	54.71 55.15	9.60 9.77	5.80 5.89
	, 0.27(s), (d) ⁺ , 1.80 – 2.27 (m),	C ₁₁ H ₂₃ NOSi ₂ (241.5)	Ber. Gef.	54.71 54.37	9.60 9.59	5.80 6.52
.21 (s; 9H), 0 .80(d; 3H), 1.	.26 (s; 9H), 92 (d; 3H), 5.07 (m; 1H)	C ₁₂ H ₂₅ NOSi ₂ (255.5)	Ber. Gef.	56.41 55.91	9.86 10.12	5.48 5.58
.17 (s; 9H), 0. .95 (t; 3H), 1. .13 (o: 2H) 5	22 (s; 9H), 15 – 1.82 (m; 2H), 28 – 6 17 (m; 2H)	C ₁₃ H ₂₇ NOSi ₂ (269.5)	Ber. Gef.	57.93 58.20	10.09 10.27	5.19 5.33
(1, 2, 1), $(2, 1, 2, 1)$, $(2, 1, 2, 1)$, $(2, 1, 2, 1)$, $(2, 1, 2, 1)$, $(2, 2, 1)$, $(2, 2, 2)$, $($		C ₁₃ H ₂₇ NO ₂ Si ₂ (285.5)	Ber. Gef.	54.68 54.77	9.53 9.33	5.46 5.46
.17 (d; 6H), 0. .78 (d; 2H), 1. 97 (sept: 1H)	30 (s; 9H), 94 (s; 3H),	C ₁₀ H ₂₁ NOSi ₂ (227.4)	Ber. Gef.	52.81 53.13	9.30 9.52	6.16 6.17
.21 + 0.24 (s + d; 6H), 4.02 (se m: 1 H)	+ d; 15H), 1.80 spt; 1H), 5.12	C ₁₀ H ₂₃ NOSi ₂ (229.4)	đ			
.20 (s; 9H), 0.3 .87 + 1.90 (2s	11 (s; 9H), ; 5H)	C ₁₁ H ₂₃ NOSiSn (332.1)	Ber. Gef.	39.78 39.74	6.98 7.06	4.22 4.34
.12 (s; 9H), 0.3 .36 (s; 6H), 5.4	11 (s; 9H), 19 (s; 1H)	C ₁₂ H ₂₅ NOSiSn (346.1)	বি			
.11 (s; 9H), 0. .64 + 1.67 (2d sent: 1 H), 5.59	44 (d; 6H), ; 2H), 4.91 : + 5.75 (2): 1H)	C ₉ H ₁₉ NOSi ₂ (213.4)	Ð			
10 + 0.14 (2) 79 + 1.83 +	s; 9H), 0.43 (d; 6H), 1.96 (3s; 5H), 4.83 (sept; 1H)	C ₁₀ H ₂₁ NOSi ₂ (227.4)	Ber. Gef.	52.81 52.69	9.30 9.47	6.16 6.09

Tab. 3. Analytische und spektroskopische Daten der durch Umsetzung der 2-Trimethylsiloxy-3-butennitrile 6 mit Elektrophilen RX erhaltenen Produkte

u

Isomerisierungsversuch des Acylenolats $13b_A$: Zu 1.40 g (5.80 mmol) (Z)-7b, gelöst in 3 ml THF, wird bei – 78 °C unter Stickstoff langsam eine Lösung von 6.00 mmol Lithiummethanolat in 6 ml THF getropft. Nach Erwärmen des Reaktionsgemischs über Nacht auf Raumtemp. werden 0.81 g (7.50 mmol) Chlortrimethylsilan zugegeben, wobei eine exotherme Reaktion eintritt. Nach einer weiteren h bei Raumtemp. wird nach AAV 4¹) aufgearbeitet. Die Destillation ergibt 1.02 g (73%) (Z)-7b mit Sdp. 50 °C/0.03 Torr. IR- und ¹H-NMR-Spektren stimmen überein mit denen von (Z)-7b.

Reaktion des Acylenolats $13b_A$ mit Chlordimethylsilan zu 2-Dimethylsiloxy-3-methyl-4-trimethylsilyl-2-butennitril (16): 0.70 g (2.91 mmol) (Z)-7b in 2 ml THF werden wie oben mit Lithiummethanolat umgesetzt, nur werden 0.33 g (3.50 mmol) Chlordimethylsilan zugesetzt. Die Aufarbeitung erfolgt nach AAV 4¹). Die Destillation ergibt 0.47 g (71%) 16 mit Sdp. 45 °C/0.01 Torr. Spektroskopische und analytische Daten vgl. Tab. 3.

2-Methoxy-3-methyl-4-trimethylsilyl-2-butennitril (18): 1.69 g (10.0 mmol) 6b werden nach AAV 2¹) metalliert. Nach Erwärmen des Reaktionsgemischs auf Raumtemp. innerhalb 5 h wird wiederum auf -78 °C abgekühlt. 4.26 g (30.0 mmol) Methyliodid werden zugegeben und 72 h wird bei -78 °C gerührt. Nach Erwärmen des Reaktionsgemischs über Nacht auf Raumtemp. wird nach AAV 3¹) aufgearbeitet. Ausb. 1.18 g (64%), Sdp. 130 °C/15 Torr. – IR (Film): 2208, 1633 cm⁻¹. – ¹H-NMR (CDCl₃): $\delta = 0.05 + 0.08$ (2s; 9H), 1.75 + 1.78 + 1.90 (3s; 5H), 3.62 (s; 3H).

C₉H₁₇NOSi (183.3) Ber. C 58.96 H 9.35 N 7.64 Gef. C 59.27 H 9.60 N 7.44

Umsetzung von 19_A mit Methyliodid zu 20^{1} : Jeweils 1.97 g (10.0 mmol) 19 werden nach AAV 2^{1} metalliert. Anschließend läßt man das Reaktionsgemisch innerhalb 3 h auf Raumtemp. erwärmen und gibt dann sofort (t = 0 h) 1.42 g Methyliodid zu oder erst nach der angegebenen Zeit nach Erreichen von Raumtemp. (t = 0.5 bzw. 2 h). Jeweils 1 h nach Zugabe des Elektrophils wird nach AAV 3^{1}) aufgearbeitet.

t = 0 h Ausb. 1.78 g (79%) 20¹), Sdp. 70°C/0.2 Torr t = 0.5 h Ausb. 1.60 g (71%) 20, Sdp. 70°C/0.2 Torr t = 2 h Ausb. 1.03 g (46%) 20, Sdp. 70°C/0.2 Torr

Reaktion von 21_A mit Chlortrimethylsilan bei Raumtemperatur: 1.62 g (10.0 mmol) 21^{1}) werden nach AAV 2^{1}) metalliert. Nach Erwärmen des Reaktionsgemischs auf Raumtemp. innerhalb 3 h werden sofort (t = 0 h) oder erst nach t = 1.5 h bzw. 5 h 1.62 g (15.0 mmol) Chlortrimethylsilan zugegeben. Nach jeweils 1 h bei Raumtemp. wird nach AAV 4^{1}) aufgearbeitet.

t = 0 h: Ausb. 2.29 g (81%) 22 und 23, Sdp. 120 °C/0.2 Torr. – IR (Film): 2215, 1630 cm⁻¹. – ¹H-NMR (CDCl₃): $\delta = 0.05$ (s), 0.27 (s), 0.36 – 1.20 (m), 1.67 (s), 1.71 (s), 1.85 (s). Aus dem Verhältnis der Integration der Trimethylsilylgruppensignale bei 0.05 und 0.27 ppm wird das Verhältnis von 22 : 23 = 93 : 7 berechnet.

C14H29NOSi2 (283.6) Ber. C 59.30 H 10.31 N 4.94 Gef. C 59.10 H 10.46 N 5.17

t = 1.5 h: Ausb. 2.34 g (83%) 22 und 23, Sdp. 110 °C/0.2 Torr. – IR (Film): 2215, 1630 cm⁻¹. – ¹H-NMR (CDCl₃): $\delta = 0.05$ (s), 0.27 (s), 0.40–1.22 (m), 1.69 (s), 1.71 (s), 1.88 (s). – 22 : 23 = 45 : 55 nach NMR.

t = 5 h: Ausb. 2.68 g (95%) 23, Sdp. 110 °C/0.2 Torr. – IR (Film): 2215, 1630 cm⁻¹. – ¹H-NMR (CDCl₃): $\delta = 0.27$ (s; 9H), 0.40–1.19 (m; 15H), 1.67 (s; 2H), 1.88 (s; 3H).

C14H29NOSi2 (283.6) Ber. C 59.30 H 10.31 N 4.94 Gef. C 59.06 H 10.25 N 5.14

Zerfall von $6d_A$ und $6f_A$ beim Erwärmen auf Raumtemperatur: 1.83 g (10.0 mmol) 6d werden nach AAV 2¹⁾ metalliert. Nach Erwärmen des Reaktionsgemischs auf Raumtemp. innerhalb von 3 h werden 1.62 g (15.0 mmol) Chlortrimethylsilan zugegeben, 1 h wird nachgerührt und nach AAV 4¹⁾ aufgearbeitet. Dabei werden 1.57 g eines zähen, braunen Öls isoliert, dessen ¹H-NMR- Spektrum mindestens 6 Silylbanden zeigt, im IR-Spektrum sind 3 breite Absorptionsbanden im Bereich von 1680 - 1580 cm⁻¹ zu beobachten.

2.13 g (10.0 mmol) 6f werden analog umgesetzt. Ausb. 2.52 g, braunes $\ddot{O}l. - {}^{1}H$ -NMR: Breite Absorptionsbande bei 2.4 - 0.8 ppm und mindestens drei breite Silylsignale.

Literatur

- ¹⁾ V. Mitteil.: U. Hertenstein, S. Hünig und M. Öller, Chem. Ber. 113, 3783 (1980), vorstehend.
- ²⁾ Aus der Dissertation M. Öller, Univ. Würzburg 1979.
- ³⁾ Ubersicht: A. G. Brook und A. R. Bassindale, in Rearrangements in Ground and Excited States, Vol. 2 (P. de Mayo, ed.), Essay 9, S. 149 227, Academic Press, Inc., New York 1980.
- ⁴⁾ Übersicht: Silicon in Organic Synthesis, M. E. Colvin, Q. Rev., Chem. Soc. 7, 15 (1978).
 ⁵⁾ R. West und A. Wright, J. Am. Chem. Soc. 96, 3214 (1974); R. West, Adv. Organomet.
- ⁶ A. G. Brook, Acc. Chem. Res. 7, 77 (1974).
- R. Gompper und H. U. Wagner, Angew. Chem. 88, 389 (1976); Angew. Chem., Int. Ed. Engl. 15, 321 (1976).
- ⁸⁾ D. Seyferth und T. F. Jula, J. Organomet. Chem. **66**, 195 (1974); W. H. Glaze, D. J. Berry und D. P. Duncan, ebenda **52**, 233 (1973); D. Seyferth, K. R. Wursthorn und R. E. Mamma-rella, J. Org. Chem. **42**, 3104 (1977); S. F. Martin und M. T. Du Priest, Tetrahedron Lett. **1977**, 3925.
- 9) D. A. Evans, G. C. Andrews und B. Buckwalter, J. Am. Chem. Soc. 96, 5560 (1964).
- ¹⁰⁾ U. Hertenstein, Dissertation, Univ. Würzburg 1977.
- ¹¹⁾ Vgl. die entsprechende Interpretation f
 ür das Anion CH₃C(CN)OSiMe₃ in Lit.⁵⁾ sowie S. H
 ünig und G. Wehner, Chem. Ber. 112, 2062 (1979).
- ¹²⁾ D. E. Webster, J. Chem. Soc. 1960, 5132.
- ¹³⁾ Dissertation R. Schaller, Univ. Würzburg 1980.
- 14) H. O. House und V. Kramer, J. Org. Chem. 28, 3362 (1963).
- ¹⁵⁾ G. S. Reddy, J. H. Goldstein und L. Mandell, J. Am. Chem. Soc. 83, 1300 (1961).
- ¹⁶⁾ H. O. House, L. J. Czuba, M. Gall und H. D. Olmstead, J. Org. Chem. 34, 2324 (1969).
- ¹⁷⁾ L. H. Sommer, J. Am. Chem. Soc. 73, 5130 (1951).

[80/80]